首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1362篇
  免费   228篇
  国内免费   291篇
化学   1258篇
晶体学   10篇
力学   48篇
综合类   18篇
数学   169篇
物理学   378篇
  2023年   16篇
  2022年   24篇
  2021年   34篇
  2020年   52篇
  2019年   46篇
  2018年   44篇
  2017年   41篇
  2016年   58篇
  2015年   69篇
  2014年   81篇
  2013年   88篇
  2012年   87篇
  2011年   98篇
  2010年   88篇
  2009年   85篇
  2008年   88篇
  2007年   67篇
  2006年   89篇
  2005年   73篇
  2004年   67篇
  2003年   70篇
  2002年   97篇
  2001年   103篇
  2000年   67篇
  1999年   51篇
  1998年   39篇
  1997年   15篇
  1996年   9篇
  1995年   15篇
  1994年   13篇
  1993年   14篇
  1992年   9篇
  1991年   16篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1974年   2篇
  1973年   4篇
  1969年   4篇
  1968年   7篇
  1967年   3篇
  1966年   5篇
  1962年   2篇
  1936年   1篇
  1903年   2篇
排序方式: 共有1881条查询结果,搜索用时 46 毫秒
101.
The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mgcat−1 h−1 under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44-fold compared to without ZIF (ca. 1 %). The Pt/Au-NZIF interaction is key to enable strong N2 adsorption over H atom.  相似文献   
102.
103.
Fluorescent materials exhibiting two‐photon induction (TPI) are used for nonlinear optics, bioimaging, and phototherapy. Polymerizations of molecular chromophores to form π‐conjugated structures were hindered by the lack of long‐range ordering in the structure and strong π–π stacking between the chromophores. Reported here is the rational design of a benzothiadiazole‐based covalent organic framework (COF) for promoting TPI and obtaining efficient two‐photon induced fluorescence emissions. Characterization and spectroscopic data revealed that the enhancement in TPI performance is attributed to the donor‐π‐acceptor‐π‐donor configuration and regular intervals of the chromophores, the large π‐conjugation domain, and the long‐range order of COF crystals. The crystalline structure of TPI‐COF attenuates the π–π stacking interactions between the layers, and overcomes aggregation‐caused emission quenching of the chromophores for improving near‐infrared two‐photon induced fluorescence imaging.  相似文献   
104.
The flame‐retardant microcapsules were successfully fabricated with an aluminum hypophosphite (AHP) core. Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS) were used to verify that AHP was encapsulated in the microcapsules, and thermogravimetry analysis showed that microencapsulated AHP (MAHP) possessed higher thermal stability than that of AHP. Then, a flame‐retardant and smoke suppression system for silicone foams (SiFs) was obtained through a synergistic effect of MAHP and zinc borate (2ZnO·3B2O3·3.5H2O). The mechanical properties, flame retardance, and smoke suppression of SiFs with MAHP and zinc borate were tested using the tensile test, limiting oxygen index (LOI) test, UL‐94 test, and cone calorimeter test. The mechanical properties indicated that the tensile strength and elongation at break of SiFs could evidently improve with the incorporation of MAHP. Compared with pure SiF, SiF8 with 4.5‐wt% MAHP and 1.5‐wt% zinc borate could achieve an LOI value of 30.7 vol% and an UL‐94 V‐0 rating, the time to ignition amplified almost six times, the peak heat release rate and total heat release were 51.10% and 46.00% less than that of pure SiF, respectively, the fire performance index increased nearly 13 times, and the fire growth index value was only 13.18% of pure SiF. Moreover, the partial substitution of zinc borate imparted a substantial improvement in both flame retardancy and smoke suppression. Especially, the peak smoke production rate and total smoke production of SiF8 were merely 38.46% and 38.84% of pure SiF.  相似文献   
105.

The influence of three polymer dispersions [styrene–butadiene copolymer (SB), styrene–acrylic ester copolymer (SA) and polyacrylic ester (PA)] on the hydration of calcium sulfoaluminate (CSA) cement within 72 h was investigated by using isothermal conduction calorimetry, X-ray diffraction analysis and thermal gravimetric analysis. The results indicate that these three polymer dispersions perform different influences on the hydration heat flow of CSA cement during different periods, they all postpone the occurrence time of the maxima peaks, and its extent is mainly dependent on the addition amount. Polymer dispersions manifest great retardation on the initial hydration of CSA cement, and the effect is much more significant within 1 h. In this stage, the generation of ettringite is strongly delayed; however, the formation of ettringite is accelerated by these polymer dispersions at and after 2 h. Among these three polymer dispersions, PA demonstrates the highest acceleration effect on the hydration degree.

  相似文献   
106.
Liu  Yu  Wang  Yong  Li  Guangqiang  Yuan  Cheng  Lu  Ru  Li  Baokuan 《Journal of Thermal Analysis and Calorimetry》2020,139(2):923-931
Journal of Thermal Analysis and Calorimetry - The structure, vaporization behavior and crystallization of CaF2–CaO–Al2O3 slags with different SiO2 contents for electroslag remelting...  相似文献   
107.
Lithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown. Herein, a diffusion‐reaction competition mechanism is proposed to reveal the rationale of different Li deposition morphologies. By controlling the rate‐determining step (diffusion or reaction) of Li deposition, various Li deposition scenarios are realized, in which the diffusion‐controlled process tends to lead to dendritic Li deposition while the reaction‐controlled process leads to spherical Li deposition. This study sheds fresh light on the dendrite‐free Li metal anode and guides to achieve safe batteries to benefit future wireless and fossil‐fuel‐free world.  相似文献   
108.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   
109.
Dynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity. SNAPol-1, the best compound in the series, shows DNP enhancement factors at 18.8 T of more than 100 in small molecules and globular proteins and also exhibits strong DNP enhancements in membrane proteins and cellular preparations. By integrating optimal sensitivity and high resolution, we expect widespread applications of this new polarizing agent in high-field DNP/ssNMR spectroscopy, especially for complex biomolecules.  相似文献   
110.
Electronic absorption spectroscopy was employed to study the aerial oxidation of catechol (1,2-benzenediol) in alkaline aqueous solution containing an excess of Mg(II) ions. Graphical analysis by the matrix method of UV spectra recorded at regular time intervals gave a good fit for two absorbing species in solution. Based on this result and our earlier ESR spectroscopic investigations we concluded that two main absorbing species in this system are Mg(II)-spin stabilized o-benzosemiquinone anion radical and C-C dimer formed by the nucleophilic attack of catecholate anion on o-benzoquinone. Although the formation of 1,2,4-benzenetriol during the catechol oxidation has been detected in some ESR studies its presence was not indicated by this analysis probably because of the low and/or stable steady state concentration throughout the experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号